Journal of Organometallic Chemistry, 241 (1983) C16-C20 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

### **Preliminary communication**

# REACTIONS OF BENZYLCHLOROBIS(TRIPHENYLPHOSPHINE)-PALLADIUM(II) WITH DIMETHYL ACETYLENEDICARBOXYLATE

KATSUMA HIRAKI\*, TOSHIHIRO ITOH, KATSUYA EGUCHI and MASAYOSHI ONISHI

Department of Industrial Chemistry, Faculty of Engineering, Nagasaki University, Bunkyomachi, Nagasaki 852 (Japan)

(Received April 30th; in revised form September 22nd, 1982)

# Summary

Benzylchlorobis(triphenylphosphine)palladium(II) reacted with dimethyl acetylenedicarboxylate to give [{Pd[ $C(CO_2Me)=C(CH_2Ph)(CO_2Me)$ ] $Cl(PPh_3)$ }] (II) and [(Ph\_3P)ClPd{ $\mu$ -C( $CO_2Me$ )=C( $CO_2Me$ )}PdCl(PPh\_3)] (III). Complexes II and III reacted with Tl(acac) to afford [Pd{ $C(CO_2Me=C(CH_2Ph)(CO_2Me)$ }-(acac)(PPh\_3)] and [(Ph\_3P)(acac)Pd{ $\mu$ -C( $CO_2Me$ )=C( $CO_2Me$ )}Pd(acac)(PPh\_3)], respectively.

Clark et al. [1, 2] studied systematically the insertion reactions of substituted acetylenes into hydrido- and methyl-platinum(II) complexes. Tohda et al. reported that dimethyl acetylenedicarboxylate (dmadc) was inserted into a carbon—palladium bond in [PdRX(PEt<sub>3</sub>)<sub>2</sub>] [R = C=CPh, X = Cl or Br; R = Me, X = I] [3] or into a hydrido—palladium bond in [Pd(C=CPh)H(PEt<sub>3</sub>)<sub>2</sub>] (prepared in situ) [4] to afford [1,2-bis(methoxycarbonyl)vinyl] bis(triethylphosphine)palladium(II) complexes. A hydridopalladium(II) complex, [PdH(NO<sub>3</sub>)-(PCy<sub>3</sub>)<sub>2</sub>] (Cy = cyclohexyl) also reacted with substituted acetylenes to give the corresponding insertion products [5]. Moreover, a chloro-bridged cyclopalladated complex derived from N,N-dimethylbenzylamine or 8-methylquinoline reacted with hexafluoro-2-butyne and diphenylacetylene to yield a chlorobridged mono-insertion product and a mononuclear bis-insertion one, respectively [6]. In this communication, we wish to describe new types of palladium-(II) complexes produced from the reactions between benzylchlorobis(triphenylphosphine)palladium(II) (I) [7] and dmadc.

A benzene solution of I (1.05 mmol) and dmadc (3.19 mmol) was stirred at room temperature for 48 h. The resulting suspension was filtered to yield a yellow precipitate and a yellow filtrate. The filtrate was concentrated and chromatographed with dichloromethane/diethyl ether (4/1) as an eluent. A yellow fraction gave a pale yellow powder, [{Pd[C(CO<sub>2</sub>Me)=C(CH<sub>2</sub>Ph)(CO<sub>2</sub>Me)]Cl-(PPh<sub>3</sub>)}<sub>2</sub>] (II). The yellow precipitate was recrystallized from dichloromethane/diethyl ether to give a pale yellow solid, [(Ph<sub>3</sub>P)ClPd{ $\mu$ -C(CO<sub>2</sub>Me)=C(CO<sub>2</sub>Me)}-PdCl(PPh<sub>3</sub>)] (III). At a molar ratio of dmadc to I of 4, II was obtained in 57% yield without the isolation of III.

Complex II (0.38 mmol) reacted with thallium(I) acetylacetonate (0.82 mmol) in dichloromethane at room temperature for 24 h to give a pale yellow solid,  $[Pd{C(CO_2Me)=C(CH_2Ph)(CO_2Me)}(acac)(PPh_3)]$  (IV). Similarly, III was treated with thallium(I) acetylacetonate in benzene at room temperature for 48



SCHEME 1

#### TABLE 1

YIELDS AND SELECTED SPECTROSCOPIC DATA

| Complex   | Yield<br>(%) | Мр. <sup>а</sup><br>(°С) | IR data <sup>b</sup> |              | 'H NMR data <sup>C</sup>                      |                                                             |                 |
|-----------|--------------|--------------------------|----------------------|--------------|-----------------------------------------------|-------------------------------------------------------------|-----------------|
|           |              |                          | ν(C=O)               | ν(C=C)       | CH <sub>3</sub> <sup>d</sup>                  | CH <sub>2</sub>                                             | CH <sup>d</sup> |
| II        | 9            | 126—127                  | 1706                 | 1604         | 3.25(6H) <sup>e</sup><br>3.31(2H)<br>3.39(4H) | $3.06d^{f}(0.7H)$<br>$4.01d^{f}(0.7H)$<br>$4.21d^{g}(1.3H)$ |                 |
| III<br>IV | 12<br>74     | 209—213<br>107—110       | 1702<br>1710         | 1553<br>1580 | 2.85(6H)<br>1.48(3H)<br>1.99(3H)<br>3.40(6H)  | 3.06d <sup>g</sup> (1H)<br>3.99d <sup>g</sup> (1H)          |                 |
| v         | 49           | 215—217                  | 1680<br>1700         | 1570         | $0.97(6H)^{i}$<br>1.34(6H)<br>3.15(6H)        |                                                             | 4.76(2H)        |

<sup>a</sup>With decomposition. <sup>b</sup>In cm<sup>-1</sup> in KBr disk. <sup>c</sup> $\delta$  value (ppm) from TMS. In CDCl<sub>3</sub>, unless otherwise noted. Aromatic protons are omitted. <sup>d</sup>Appearing as a singlet. <sup>e</sup>In a mixed solvent (CD<sub>2</sub>Cl<sub>2</sub>: C<sub>6</sub>D<sub>6</sub> = 10:1). <sup>f</sup>J(HH) = 13 Hz, <sup>g</sup>J(HH) = 14 Hz. <sup>h</sup>Overlapping with methylene protons of solvating molecule (1/2 CH<sub>2</sub>Cl<sub>2</sub>). C18

h to afford a pale greenish yellow solid,  $[(Ph_3P)(acac)Pd\{\mu-C(CO_2Me)=C-(CO_2Me)\}Pd(acac)(PPh_3)]$  (V). The elemental analyses of II-V were satisfactory. The yields and selected spectroscopic data are shown in Table 1.

The IR spectra of II–V showed a band near 1590 cm<sup>-1</sup>, assignable to  $\nu$ (C=C). Furthermore, the retention of the ester groups and PPh<sub>3</sub> ligands was confirmed by a  $\nu$ (C=O) band near 1700 cm<sup>-1</sup> and a  $\nu$ [P–C(aromatic)] one near 1435 cm<sup>-1</sup>, respectively. In addition, IV and V exhibited three bands near 1580, 1515, and 1400 cm<sup>-1</sup>, characteristic of an O,O'-chelating acetylacetonato ligand.

The <sup>1</sup>H-NMR spectrum of IV showed two doublets at  $\delta$  3.06 and 3.99 (an AB type, <sup>2</sup>J(HH) = 14 Hz), ascribable to benzyl methylene protons, indicating that the rotation of the benzyl group was restricted, probably by steric requirement of neighboring ester groups and the PPh<sub>3</sub> ligand. Two kinds of methoxy protons resonated as a singlet at  $\delta$  3.40 ppm, owing to accidental overlapping. Taking into account the restricted rotation of the benzyl group, the two ester groups must be in *cis* positions to each other, as shown in Scheme 1. In addition, the plane which the olefinic moiety forms together with the two ester-carbonyl carbons, the methylene one and the palladium atom is located perpendicularly to the palladium coordination plane.

The <sup>1</sup>H-NMR spectrum of II showed three doublets at  $\delta$  3.06, 4.01, and 4.21 ppm ascribable to methylene protons of benzyl groups.\* Methoxy protons resonated as three singlets at  $\delta$  3.25 (6H), 3.31 (ca. 2H), and 3.39 ppm (ca. 4H). The  ${}^{13}C{}^{1}H$  -NMR spectrum of II in CD<sub>2</sub>Cl<sub>2</sub> showed two sets of signals; large singlets at  $\delta$  43.8 (CH<sub>2</sub>), 51.4 and 51.6 (OCH<sub>3</sub>)\*\*, and 164.1 and 169.7 ppm (C=O): small ones at  $\delta$  44.6 (CH<sub>2</sub>), 54.2 (OCH<sub>3</sub>)\*\*\*, and 158.5 and 169.2 ppm (C=O). These data indicate unambiguously that II involves two nonequivalent 1,2-bis(methoxycarbonyl)-3-phenyl-1-propenyl moieties. The molecular weight of II in CH<sub>2</sub>Cl<sub>2</sub> was 1386 (calcd. 1274.8), implying a dimeric structure<sup> $\dagger$ </sup>. A  $\sigma_{\pi}$ -vinyl-bridged structure for II was ruled out by the fact that palladium(II) species such as di- $\mu$ -chloro-dichlorobis(triphenylphosphine)dipalladium(II) did not form a stable complex with dimethyl maleate, a model compound of the 1,2-bis(methoxycarbonyl)-3-phenyl-1-propenyl moiety. Then, II was ascribed a chloro-bridged dimeric structure (Scheme 1). It has been determined that the two coordination planes in a chloro-bridged dimeric palladium(II) complex are situated with a dihedral angle of about  $121^{\circ}$  [8, 9]. Assuming that the chlorobridged structure of II has a similar dihedral angle and that the olefinic moieties in II are coordinated to palladium atoms in a similar way to that in IV, there are three possible configurations, A, B, and C, as shown in Fig. 1. These three configurations involve two nonequivalent 1,2-bis(methoxycarbonyl)-3-phenyl-1-propenyl moieties with respect to the directions of the olefinic double bond. On the basis of these discussions, II was assigned to a mixture of the configurational isomers A, B, and C. It is noteworthy that I liberates one of the two PPh<sub>3</sub> ligands during the reaction with dmadc to give the chloro-bridged binu-

<sup>\*</sup>Another methylene proton signal was not distinguished owing to overlapping with the methoxy proton ones.

<sup>\*\*</sup>Olefinic carbon signals were not distinguished owing to overlapping with aromatic carbon ones.

<sup>\*\*\*</sup>Another methoxy carbon signal was not found owing to overlapping with solvent signals.

 $<sup>^\</sup>dagger$ Molecular weights were determined with a Corona Model 114 molecular weight apparatus.



 $P=PPh_3$ ,  $R=CO_2Me$ 

Fig. 1. The three isomers of II.

clear complex, II, in contrast to the normal insertion products reported previously [3-5]. It seems that the ready dissociation of the PPh<sub>3</sub> ligand from palladium is attributable to poor  $\sigma$ -donating ability as compared with trialkylphosphines [10].

The <sup>1</sup>H-NMR spectrum of III showed a singlet at  $\delta$  2.85 ppm attributable to methoxy protons, as well as a multiplet in the range of  $\delta$  7.0–7.8 ppm (aromatic protons), but lacked a benzyl-methylene proton resonance. The molecular weight of III in 1,1-dichloroethane was 980 (calcd. 950.39). Complex III reacted with dry hydrogen chloride in dichloromethane at room temperature to afford dimethyl fumarate (11%, detected by GLPC) and di- $\mu$ -chloro-dichlorobis(triphenylphosphine)dipalladium(II) (15%, isolated yield). These facts and the elemental analysis indicate that III is dimethyl 1,2-bis[chloro(triphenylphosphine)palladio(II)] fumarate, as shown in Scheme 1. This structure is a sharp contrast to the normal insertion products [1–5]. It has been reported that [ClPd( $\mu$ -Ph<sub>2</sub>PCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub>PdCl] and [Ru( $\eta^{5}$ -C<sub>5</sub>H<sub>5</sub>)(CH<sub>3</sub>)(CO)(PPh<sub>3</sub>)] reacted with the disubstituted acetylenes to give 1,2-di[metallo(II)] ethylene-type complexes [ClPd( $\mu$ -Ph<sub>2</sub>PCH<sub>2</sub>PPh<sub>2</sub>)<sub>2</sub>( $\mu$ -CY=CY)PdCl] (Y = CO<sub>2</sub>Me or CF<sub>3</sub>) [11] and [(Ph<sub>3</sub>P)(OC)( $\eta^{5}$ -C<sub>5</sub>H<sub>5</sub>)Ru { $\mu$ -C(CF<sub>3</sub>)=C(CF<sub>3</sub>)}Ru( $\eta^{5}$ -C<sub>5</sub>H<sub>4</sub>C<sub>6</sub>H<sub>4</sub>PPh<sub>2</sub>- $\sigma$ )(CO)] [12], respectively.

As for V, the two  $\nu$ (C=O) bands and the simple <sup>1</sup>H-NMR spectrum suggest that V consists of two isomers with  $C_i$ - and a  $C_2$  symmetries at low temperature, and that the two isomers exchange with each other rapidly on the NMR time scale at room temperature. No <sup>1</sup>H-NMR spectrum could be obtained at low temperature owing to its fairly low solubility.

#### Acknowledgement

The authors thank Mr. Toshinori Yamashita, Nagasaki University, for his help in the experimental work. The present work was partially supported by a Grant-in-Aid from the Ministry of Education.

### References

<sup>1</sup> T.G. Attig, H.C. Clark, and C.S. Wong, Canad. J. Chem., 55 (1977) 189.

- 2 H.C. Clark and R.J. Puddephatt, Inorg. Chem., 9 (1970) 2670, and 10 (1971) 18.
- 3 Y. Tohda, K. Sonogashira, and N. Hagihara, J. Chem. Soc., Chem. Commun., (1975) 54.
- 4 Y. Tohda, K. Sonogashira, and N. Hagihara, J. Organometal. Chem., 110 (1976) C53.
- 5 H.C. Clark and C.R. Milne, J. Organometal. Chem., 161 (1978) 51.
- 6 A. Bahsoun, J. Dehand, M. Pfeffer, M. Zinsius, S.E. Bouaoud, and G.L. Borgne, J. Chem. Soc., Dalton, (1979) 547.
- 7 P. Fitton, M.P. Johnson, and J.E. Mckeon, J. Chem. Soc., Chem. Commun., (1968) 6.
- 8 A.G. Constable, W.S. McDonald, L.C. Sawbins, and B.L. Shaw, J. Chem. Soc., Dalton, (1980) 1992.
- 9 Y. Fuchita, K. Hiraki, T. Yamaguchi, and T. Maruta, J. Chem. Soc., Dalton (1981) 2405.
- 10 C.A. Tolman, Chem. Rev., 77 (1977) 313.
- 11 A.L. Balch, C-Li Lee, C.H. Lindsay, and M.M. Olmstead, J. Organometal. Chem., 177 (1979) C22.
- 12 M.I. Bruce, R.C.F. Gardner, and F.G.A. Stone, J. Chem. Soc., Dalton, (1979) 906.

# JOURNAL OF ORGANOMETALLIC CHEMISTRY, VOL. 241, NO. 1

## AUTHOR INDEX

| Arpac, E., 27         | Graham, W.A.G., 45    | Onishi, M., C16            |
|-----------------------|-----------------------|----------------------------|
| Astier, A., 53        | Grenz, M., C5         | Oro, L.A., 77              |
| Beletskaya, I.P., C13 | Herberich, G.E., 1    | Pregosin, P.S., 87         |
| Bregadze, V.I., C13   | Hiraki, K., C16       |                            |
|                       | Hitchcock, P.B., C9   | Rigault, C., 53            |
| Castiglioni, M., 99   | Ho, W.Ch., 131        | Rüegger, H., 87            |
| Christol, H., C1      |                       | Ruiz, C.C.A., 77           |
| Coste, J., C1         | Itoh, T., C16         |                            |
| Cristau, H.J., C1     |                       | Sappa, E., 99              |
|                       | Jeannin, Y., 53       | Shiba, C.F., 119           |
| Dabard, R., 37        |                       | Simonneaux, G., 37         |
| Dagonneau, M., 113    | Klein, S.I., C9       | Skibbe, V., 15             |
| Dahlenburg, L., 27    | Koval'chuk, N.A., C13 | Suleimanov, G.Z., C13      |
| Daran, JC., 53        | Kretschmer, M., 87    | Sweet, J.R., 45            |
| Dubois, R.A., 69      |                       |                            |
| Du Mont, WW., C5      | Lanfranchi, M., 99    | Tiripicchio, A., 77, 99    |
|                       | Le Maux, P., 37       | Tiripicchio Camellini, M., |
| Eguchi, K., C16       |                       | 77                         |
| Erker, G., 15         | Mak, T.C.W., 131      | Truchon, A., C1            |
|                       | Maux, P. Le, 37       |                            |
| Fauvarque, J.F., 113  | Mont, WW. Du, C5      | Valle, M., 99              |
| Garrou, P.E., 69      | Naithani, A.K., 1     | Waddell, W.H., 119         |
| Godovikov, N.N., C13  | Nixon, J.F., C9       |                            |